There is a type of fractal according to Mandelbrot or Julia method's, called oscillating fractals<ref name="Mandelbrot1983" />, they are generated by iteration of two or more different functions alternatively <ref name="jmb" />, until convergence to a certain value or divergence to infinity. In the examples below can be reproduced some oscillating fractals, Mandelbrot and Julia type, which are colored using the algorithm of the escape velocity. Oscillating fractals, Mandelbrot type, non symmetrical Oscillating fractals, Julia type, non symmetrical and with an unique constant. Oscillating fractals, Julia type symmetrical (3 functions with an unique constant) <big> F(Z)+C .. G(Z)+C .. F(Z)+C </big> Oscillating fractals, Julia type symmetrical (3 functions with several constants) <big> F(Z)+c1 .. G(Z)+c2 .. F(Z)+c1 </big> Oscillating fractals, Julia type symmetrical (5 functions with an unique constant) <big> F(Z)+c .. G(Z)+c .. H(Z)+c .. G(Z)+c .. F(Z)+c </big> Oscillating fractals, Julia type symmetrical (5 functions with several constants) <big> F(Z)+c1 .. G(Z)+c2 .. H(Z)+c1 .. G(Z)+c2 .. F(Z)+c1 </big> Oscillating fractals, Julia type symmetrical (7 functions with an unique constant) <big> F(Z)+c .. G(Z)+c .. H(Z)+c .. G(Z)+c .. H(Z)+c .. G(Z)+c .. F(Z)+c </big> Oscillating fractals, Julia type symmetrical (7 functions with several constants) <big> F(Z)+c1 .. G(Z)+c2 .. H(Z)+c2 .. G(Z)+c2 .. H(Z)+c2 .. G(Z)+c2 .. F(Z)+c1 </big> Oscillating fractals, Julia type pseudo-symmetrical, with an unique constant <big> F(Z)+c .. G(Z)+c .. F'(Z)+c , </big> Oscillating fractals, Julia type pseudo-symmetrical inverse,(3 functions with an unique constant) <big> F(Z)+c .. G(Z)+c .. H(Z)+c </big> & <big> H(Z)+c .. G(Z)+c .. F(Z)+c </big>
|