Heat and Micronutrient Cultivation in Perennial Chickpea Species
Agricultural yield for Cicer arietinum is often based on genetic and phenotypic variability which has recently been influenced by artificial selection. The uptake of micronutrients such as inorganic phosphorus or nitrogen is vital to the plant development of Cicer arietinum, commonly known as the perennial chickpea. Consequently, the impact of heat cultivation not only affects the protein content of the chickpea itself, but the ecosystem that it supports as well. Increasing the height and size of chickpea plants involves using micronutrient fertilization with varying doses of inorganic phosphorus and nitrogen. Increasing the levels of inorganic phosphorus at all doses incrementally increases the height of the chickpea plant. Thus, the seasonal changes in phosphorus soil content as well as periods of drought that are known to be a native characteristic of the dry Middle-Eastern region where the chickpea is most commonly cultivated have a strong effect on the growth of the plant itself. Plant yield is also affected by a combination of phosphorus nutrition and water supply, resulting in a 12% increase in yield of the crop. Additional minerals and micronutrients make the absorption process of nitrogen and phosphorus more available. Inorganic phosphate ions are generally attracted towards charged minerals such as iron and aluminium oxides. Additionally, growth and yield are also limited by zinc and boron deficiencies in the soil. Boron-rich soil resulted in an increase of chickpea yield and size, while soil fertilization with zinc seemed to have no apparent effect on the chickpea yield.