|
The term "Faudree Effect" does, if fact, exist in the composite material science field and the phenomenon is documented in the international publications. Note it has been deleted by contributors of who do not have a background in materials science. The phenomenon is polymer degradation by galvanic action was first described in the technical literature by Michael C. Faudree in 1990.. This was the discovery that "plastics can corrode", i.e. polymer degradation may occur through galvanic action similar to that of metals under certain conditions. Normally, when two dissimilar metals such as copper (Cu) and iron (Fe) are put into contact and then immersed in salt water, the iron will undergo corrosion, or rust. This is called a galvanic circuit where the copper is the noble metal and the iron is the active metal, i.e., the copper is the cathode or positive (+) electrode and the iron is the anode, or negative (-) electrode. A battery is formed. It follows that plastics are made stronger by impregnating them with thin carbon fibers only a few micrometers in diameter known as carbon fiber reinforced polymers (CFRP). This is to produce materials that are high strength and resistant to high temperatures. The carbon fibers act as a noble metal similar to gold (Au) or platinum (Pt). When put into contact with a more active metal, for example with aluminum (Al) in salt water the aluminum corrodes. However in early 1990, Michael C. Faudree discovered that imide-linked resins in CFRP composites degrade when bare composite is coupled with an active metal in salt water environments. This is because corrosion not only occurs at the aluminum anode, but also at the carbon fiber cathode in the form of a very strong base with a pH of about 13. This strong base reacts with the polymer chain structure degrading the polymer. Polymers affected include bismaleimides (BMI), condensation polyimides, triazines, and blends thereof. Degradation occurs in the form of dissolved resin and loose fibers. The hydroxyl ions generated at the graphite cathode attack the O-C-N bond in the polyimide structure. This phenomenon, that polymers can undergo galvanic corrosion like metals do has been referred to in the field as the "Faudree Effect". Standard corrosion protection procedures were found to prevent polymer degradation under most conditions although research is ongoing.
|
|
|