Zerona

Zerona is a low-level laser device developed by Erchonia Corp. for non-invasive body slimming of the waist, hips, and thighs. It has been shown to disrupt adipocyte, or fat cell, membranes causing the release of stored lipids and fatty material, in turn, promoting adipocyte collapse. The device was first introduced to the market in 2008 as an off-label use device for slimming, but later was cleared as a Class II medical device by the Food and Drug Administration in 2010 indicated for use as a non-invasive dermatological aesthetic treatment for the reduction of circumference of hips, waist, and thighs. Zerona was the first aesthetic device to receive this indication by the FDA following the completion of a placebo-controlled, randomized, double-blind, multi-centered clinical trial. Clinical study participants randomly assigned to receive “active” or real treatment displayed an average loss of across the waist, hips, and thighs in two weeks. This was compared to study participants randomly assigned to the “sham” or placebo group who exhibited a reduction of after two weeks.
Device
Zerona is a Class II low-level laser medical device. Low level laser therapy (LLLT) represents a division of photomedicine utilizing defined parameters of laser light for the treatment of a specific medical ailment. The efficacy and safety of this subtle therapeutic approach is dependent on the wavelength, dosage, pulsation, and intensity being applied. For instance, laser therapy has exhibited a biphasic dose response revealing that too much applied energy could hamper or prevent the desired clinical outcome from transpiring. The development of Zerona required significant clinical investigation to determine the ideal output parameters to ensure optimal efficacy and safety. Studies evaluated Zerona’s interaction with individual to several million fat cells in order to determine the precise slimming setting. Zerona is a monochromatic semiconductor diode laser that emits 5 independent 635 nm divergent beams.
History
Initial trials for Zerona began in late 1998 in Cali, Colombia, by Rodrigo Neira and his wife Clara Neira at the Universidad Nacional de Colombia. They first applied the device as an adjunct to liposuction to reduce pain and inflammation commonly experienced after the invasive surgical procedure. In hopes of achieving better pain reduction they began applying LLLT prior to aspiration and found that the subcutaneous fat appeared softer and easier to extract. Fascinated with this finding, the Neiras started performing histological investigations to determine why laser had its biological influence on fat tissue. Using scanning electron microscopy and transmission electron microscopy, they observed the formation of transitory pores or openings in the protective membranes of adipocytes which enabled stored intracellular lipids to be released from enlarged fat cells. The term emulsification was applied to describe the laser-induced liberation of the stored lipids. The initial findings were later confirmed by three individual sites including the University of Singapore, the University of Mexico, and the University of Chicago. These findings prompted the development of a device, the EML Laser, to assist in the surgical procedure of liposuction, with the intent to emulsify the fat and thereby soften the area prior to aspiration. A placebo-controlled, randomized, double-blind, multi-centered clinical study was performed to evaluate the clinical utility of this application as an adjunct to liposuction and found that laser therapy decreased operating room times and increased the volume of fat extracted, less force was required by the physician to break up fat, and the recovery for patients was significantly improved.
Mechanism of action
The exact mechanism of action for Zerona is not fully understood. As a low-level laser device the theory of action is defined as bioorganic photochemistry, a discipline that explores the interaction between photons and biochemical pathways within cells. Like many other science principles, bioorganic photochemistry is defined by laws, and the first law of photochemistry states that a photoabsorbing structure must be present to yield a clinical outcome. Cytochrome c oxidase, a terminal enzyme found within the electron transport chain of the mitochondria, has been reported by Karu et al. (2010) to function as a photoabsorbing complex within eukaryotic cells (eukaryote). This enzyme is responsible for facilitating the transport of electrons across the inner mitochondrial membrane to reduce oxygen and generate a proton electrochemical gradient. Cytochrome c oxidase serves an important role in the metabolic process known as oxidative phosphorylation, which is the production of the high energy molecule adenosine triphosphate (ATP). Stimulation of cytochrome c oxidase with a well-defined monochromatic low-level laser instrument modulates cellular metabolism and secondary biological cascades which can affect cell function and behavior giving rise to the positive clinical outcomes that have been reported. It is suggested that laser irradiation increases the rate at which cytochrome c oxidase transfers electrons from cytochrome c to dioxygen. Moreover, it has been proposed that laser irradiation reduces the catalytic center of cytochrome c oxidase, making more electrons available for the reduction of dioxygen. In turn, an increase in electron and proton transfer increases the quantity of ATP that is synthesized which can directly affect numerous intracellular proteins.
The upregulation of ATP induced by laser therapy is also responsible for the increased production of a natural byproduct known as reactive oxygen species (ROS). This highly reactive oxygen molecule participates in numerous pathways within a cell. However, as the concentration of ROS elevates a process known as lipid peroxidation can occur where ROS reacts with lipids found within cell membranes temporarily damaging them.
 
< Prev   Next >